A Study of Immersed Boundary Method in a Ribbed Duct for the Internal Cooling of Turbine Blades

نویسنده

  • Long He
چکیده

A STUDY OF IMMERSED BOUNDARY METHOD IN A RIBBED DUCT FOR THE INTERNAL COOLING OF TURBINE BLADES Long He Abstract In this dissertation, Immersed Boundary Method (IBM) is evaluated in ribbed duct geometries to show the potential of simulating complex geometry with a simple structured grid. IBM is first investigated in well-accepted benchmark cases: channel flow and pipe flow with circular crosssection. IBM captures all the flow features with very good accuracy in these two cases. Then a two side ribbed duct geometry is test using IBM at Reynolds number of 20,000 under fully developed assumption. The IBM results agrees well with body conforming grid predictions. A one side ribbed duct geometry is also tested at a bulk Reynolds number of 1.5 × 10 . Three cases have been examined for this geometry: a stationary case; a case of positive rotation at a rotation number (Ro = ΩDh/U) of 0.3 (destabilizing); and a case of negative rotation at Ro = −0.3 (stabilizing). Time averaged mean, turbulent quantities are presented, together with heat transfer. The overall good agreement between IBM, BCG and experimental results suggests that IBM is a promising method to apply to complex blade geometries. Due to the disadvantage of IBM that it requires large amount of cells to resolve the boundary near the immersed surface, wall modeled LES (WMLES) is evaluated in the final part of this thesis. WMLES is used for simulating turbulent flow in a developing staggered ribbed U-bend duct. Three cases have been tested at a bulk Reynolds number of 10: a stationary case; a positive rotation case at a rotation number Ro = 0.2; and a negative rotation case at Ro = −0.2. Coriolis force effects are included in the calculation to evaluate the wall model under the influence of these effects which are known to affect shear layer turbulence production on the leading and trailing sides of the duct. Wall model LES prediction shows good agreement with experimental data.In this dissertation, Immersed Boundary Method (IBM) is evaluated in ribbed duct geometries to show the potential of simulating complex geometry with a simple structured grid. IBM is first investigated in well-accepted benchmark cases: channel flow and pipe flow with circular crosssection. IBM captures all the flow features with very good accuracy in these two cases. Then a two side ribbed duct geometry is test using IBM at Reynolds number of 20,000 under fully developed assumption. The IBM results agrees well with body conforming grid predictions. A one side ribbed duct geometry is also tested at a bulk Reynolds number of 1.5 × 10 . Three cases have been examined for this geometry: a stationary case; a case of positive rotation at a rotation number (Ro = ΩDh/U) of 0.3 (destabilizing); and a case of negative rotation at Ro = −0.3 (stabilizing). Time averaged mean, turbulent quantities are presented, together with heat transfer. The overall good agreement between IBM, BCG and experimental results suggests that IBM is a promising method to apply to complex blade geometries. Due to the disadvantage of IBM that it requires large amount of cells to resolve the boundary near the immersed surface, wall modeled LES (WMLES) is evaluated in the final part of this thesis. WMLES is used for simulating turbulent flow in a developing staggered ribbed U-bend duct. Three cases have been tested at a bulk Reynolds number of 10: a stationary case; a positive rotation case at a rotation number Ro = 0.2; and a negative rotation case at Ro = −0.2. Coriolis force effects are included in the calculation to evaluate the wall model under the influence of these effects which are known to affect shear layer turbulence production on the leading and trailing sides of the duct. Wall model LES prediction shows good agreement with experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Innovation in Film Cooling of the Gas Turbine Blades Applying an Upstream Jet

A new design concept is introduced to control the near-wall integration between the hot-gas boundary layer and the cooling jets in order to enhance the adiabatic film cooling effectiveness of the gas turbine blades. In this new approach, another film cooling port, having a very low blowing ratio, which prevents formation of the counter-rotating vortex pare, is applied just upstream of the main ...

متن کامل

پیش‌بینی جریان و انتقال حرارت در کانال‌های ریب‌دار سه بعدی توسط مدل‌های ?-K خطی و غیرخطی

The present paper deals with the prediction of three-dimensional fluid flow and heat transfer in rib-roughened ducts of square cross-section. Such flows are of direct relevance to the internal cooling system of modern gas turbine blades. The main objective is to assess how a recently developed variant of a cubic non-linear model (proposed by Craft et al. (1999)), that has been shown to produce ...

متن کامل

Cooling Turbine Blades using Exciting Boundary Layer

The present study is concerned with the effect of exciting boundary layer on cooling process in a gas-turbine blades. The cooling process is numerically investigated. Observations show cooling the first row of moving or stable blades leads to increase their life-time. Results show that minimum temperature in cooling line with exciting boundary layer is lower than without exciting. Using block i...

متن کامل

An Investigation on Performance of Shrouding a Small Wind Turbine with a Simple Ring in a Wind Tunnel

Ducted wind turbines are a kind of small wind turbine having a diffuser or any other shape around the rotor which increases the air flow through the blades and absorbs more power. In the present study, a small wind turbine was ducted with a relatively simple ring and its performance was investigated in a wind tunnel. The duct is shaped using rolling steel sheets on a sloping surface and finally...

متن کامل

Analysis and Multi-disciplinary Optimization of Internal Coolant Networks in Turbine Blades

This paper presents the theoretical methodology, conceptual demonstration, and validation of a fully automated computer program for the inverse design and optimization of internal convectively cooled three-dimensional axial gas turbine blades. A parametric computer model of the three-dimensional internal cooling network was developed, including the automatic generation of computational grids. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015